
DSNP: A Protocol for Personal Identity and Communication

on the Web

Dr. Adrian D. Thurston

Vancouver, British Columbia, Canada
thurston@complang.org

Abstract

The social web is emerging as a pervasive com-
munication tool. The systems in use provide us
with online identity. They give us tools for ef-
ficiently communicating with people we know.
While the emergence of this new paradigm is to
be appreciated, there are improvements to be
made. The existing tools force us to consider
who we are able to communicate with when we
decide who our communication service provider
is. As we collectively discover the value in the
social web, we must lift this constraint. We
must go from pockets of social activity in closed
systems, to global social activity over open pro-
tocols. Distributed Social Networking Protocol
(DSNP) one such protocol. In this position pa-
per we cover the most important elements of
DSNP. These elements are tools for taking the
user experiences of the social web into an open
space were everyone is free to contribute to an
ecosystem of software and techniques.

1 Introduction

Social networking sites are becoming essential
communication tools. The paradigms are be-
coming ingrained in our day-to-day communi-
cation, but we are behind the needed state of
affairs because the de facto tools are closed sys-

Copyright c© 2011 Adrian D. Thurston. Permis-
sion to copy is hereby granted provided the original
copyright notice is reproduced in copies made.

tems. Our identities are becoming fused with
the companies that provide us with the soft-
ware. Our data is not owned by us. We have
little choice and therefore little control. The
good news is that the existing systems repre-
sent the first generation of this technology. The
next generation will be built on a foundation of
open technology. This paper focuses on the de-
sign of one candidate – Distributed Social Net-
working Protocol (DSNP).

When we look closely at existing social net-
working systems we find that underlying all the
features are two basic elements, identity and
message broadcast. When a user takes an ac-
tion, such as uploading a file or writing a blog
post, they do it with their own identity as the
host of the content. At other times, content is
created on a friend’s identity. In both cases,
notification of the activity is broadcast to the
user’s contacts. Once received by contacts, it
can be filtered and displayed appropriately.

In a closed system this is an easy problem.
We can have a collection of users with some in-
ternal encoding of identity. User-created con-
tent is encoded in the same database using the
same schemes. Displaying broadcasted infor-
mation is simply a problem of selecting the ap-
propriate data from the common database. So
long as the system is programmed securely, no
user can break the rules by injectng messages
to appear as though they come from someone
else. No user can or snoop on messages they
are not entitled to see.

Once we start moving to a decentralized sys-

1

tem, we gain badly needed freedom, but at the
same time we introduce a number of security
issues. How does one stop people from sniffing
activity? How about forging messages? The in-
tegrity of our identity is important to us, and
without ground rules and some basic protec-
tions, any proposed system will quickly become
unusable.

In this paper we reduce social networking ac-
tivities to a small number of functions. We
do not need to compromise on security or re-
duce the quality of the user experience when
we break from a central database. We give an
overview of our techniques and we present a
software architecture designed for rapid uptake
of these ideas.

2 RSA-Based Identity

If we consider the Pretty Good Privacy sys-
tem (PGP) as a social network, one function
it does really well is declare and protect iden-
tities. Each identity gets an RSA asymmetric
key. It is used as the foundation of the iden-
tity. In DSNP we do the same; we allocate key
pairs, distribute public keys, and use the key
pairs for signing and encryption. We take out
the email address from the public portion and
put in a user’s URI.

We take a different approach to managing
private keys. It is unlikely that we can expect
an average user to manage their own keys, so we
store keys on the server. This is something of a
security risk that we must mitigate. We utilize
not a single private key, but several keys, with
varing privilege levels.

The most secure key is allocated at identity
creation time, encrypted with a password, and
decrypted for use very infrequently. It is re-
served for proving intent of significant opera-
tions, such as identity movement or deletion.

Then next most secure key is stored en-
crypted, is decrypted on login, but is immedi-
ately discarded from memory after use. It can
be used to sign login tokens that prove recent
login activity.

The third most secure key is stored en-
crypted and retained in memory unencrypted,
but only while the user is logged in. It is used
for any signing activity that requires a cur-

rently logged-in user. This key is required most
often, as much of the protocol covers activity
of logged-in users.

The final key, which is the least secure, is
stored unencrypted and is always available for
use, regardless of whether the user is logged
in or not. This is used for activity that does
not require a logged in user. It is typically in
response to other user’s queries or requests, for
example, submitted friend requests.

If we know our peers will accept signatures
at certain privilege levels for certain actions,
and we are diligent about encrypted storage,
we protect ourselves from some forms of unau-
thorized access to our identity. For example,
we can anticipate recovering from a server theft
under this scheme. The most secure key won’t
be accessible by anyone who has acquired the
server hardware, even if they manage to keep it
running during the theft. Assuming adequate
backups are available, the identity can then be
safely moved to another site by notifying all
contacts of the change.

We use asymmetric keys to protect identi-
ties, encrypt messages, sign messages. Next
we need to build out a protocol that supports
friending, passwordless login, message passing,
distributed agreement.

3 Friending Protocol

The first step in a social network interaction is
to establish contacts. We have three comput-
ers involved int this action: the browser initi-
ating the request, the server representing the
browser’s identity, and the server representing
the recipient of the friend request.

It is critical that the recipient’s server be as-
sured the browser is the actual owner of the
identity they are claiming. To satisfy this we
must challenge the browser to return a token
that only the browser’s server is privy to. The
browser must go home to their own server to
retrieve this token, then submit it as part of
the final friend request. Once the request is re-
ceived, it is stored on the recipient’s server to
later be accepted or denied. This final step in-
volves a notification message to the requestor.

This challenge-response pattern is repeated
throughout DSNP. We often have some browser

2

on another user’s site and the browser needs
to prove ownership of their identity. A token
is encrypted to the identity’s appropriate RSA
key, the browser goes home, and if logged in
correctly, fetches the token and returns it to
the site that issued the challenge.

4 Passwordless Login

The pattern used for friending is also used for
passwordless login. If a user wishes to login to
a friend’s site, a login token is allocated and en-
crypted to the browser’s identity. The browser
must go home, prove she is logged in, decrypt
the token, then return it to the friend’s site.
From there the browser is granted access the
identity in a role that indicates she is a friend.

5 Broadcasting

The basic element in social networking is the
broadcasted message. All activity by a person
is broadacasted to others, then displayed in an
aggregate news feed. These feeds are filtered
and restricted by the recipient’s viewing pref-
erences.

Considering a user’s contact list can grow to
a large number of recipients, perhaps on the or-
der of thousands, we must consider the cost of
RSA-based encryption to contact lists of this
size. Several thousand RSA-based encryptions
can easily take up seconds of CPU time. If we
wish to develop systems that host thousands
of users, we are creating for ourselves a perfor-
mance problem.

To solve this problem, DSNP introduces a
broadcast key. This is a pre-shared symmetric
key that is given to contacts ahead of time. All
broadcast activity can be encrypted once and
the single message copied to all contacts. The
key has a generation associated with it, so if it
needs to be replaced because a group member
is being removed, it can be delivered one user
at a time, then the new generation made active
once it has been fully replaced.

6 Message Signing Keys

Broadcast and direct friend-to-friend messages
must be signed to prove they come from a valid
contact. Signing is both good and bad. It is
good because it eliminates the possibility of at-
tackers injecting messages into our news feed.
It is bad because we give people proof that we
have said something. While not expected and
always unfortunate, we have to consider the
possibility that something we say can be used
against us. We must introduce some deniabil-
ity.

To solve this, we never sign the things we say
with our permanent identity keys, instead we
distribute signing keys and use those. Signing
keys are less valuable to us and can be revealed
should we absolutely need to deny something
we have said. We can do this while preserving
our most valuable keys and therefore preserve
our identity.

Signing keys are given directly to every con-
tact. We compose a unique message that con-
tains the recipient’s identity and the public por-
tion of the disposable signing key, then sign
that message with one of our permanent keys.
If someone makes public something we have
said and they wish to prove it, they must also
reveal their own identity along with the proof.

Next, we are able to divulge the signing key
and create a situation such that anyone is able
to produce the proof that the attacker pro-
duced. Once a key has been revealed, the at-
tacker then faces the problem of proving that
the signed message they received was produced
before the key was revealed. This is difficult
because it is easy to cast doubt on any such
assertion.

Before we reveal a signing key, we must first
inform all of our remaining friendly contacts
that the key is no longer good, otherwise those
contacts may receive forged messages and be-
lieve them. We therefore have to track who
we have given signing keys to. This applies to
friends, and friends of friends who have received
notifications of our activity.

Key revealing should be considered a last line
of defense, as it is indeed cumbersome to ensure
that a signing key is no longer trusted by the
contacts who have previously received it. It is
a nice option to have, nonetheless.

3

7 Remote Broadcasting

Many social social activities can be considered
messages with several actors. For example, a
”board post” is a hosted message with a pub-
lisher and an author. The publisher is the
owner of the board and the author is the friend
making the post. Notification of the post is
broadcast to the contact list of both parties.

As another example, a photo tag is a mes-
sage containing co-ordinates and a reference to
a hosted photo. It can involve up to three ac-
tors. The publisher is the owner of the photo.
The subject is the person being tagged, and the
author is the person doing the tagging.

In DSNP we generalize multi party activ-
ity into a function called ’remote broadcasting’
and we propose reducing social activity to this
function. The kinds actors that can be involved
are the publisher, the author, and some num-
ber of subjects. Any of the actors are able to
broadcast the message to their contact list, and
when they do so, they are also called a broad-
caster.

We require all actors to agree on every re-
motely broadcasted message. On some mes-
sage types we want the actor to be logged in to
authorize the message, and on others, the mes-
sage can be automatically authorized. Authors
should always be logged in. For the remaining
combinations of message type and actor type,
these decisions can be based on each user’s pref-
erences. For example, a user can deny a signing
request on a photo tag until they have had a
chance to review the tag, or they can automati-
cally accept all photo tags by certain users. Re-
gardless of the particular policy in place, once
agreement has been reached by all parties, the
message can be broadcast.

Like the friending protocol and passwordless
login, remote broadcasting involves a challenge
and response to the author. For example, a
”board post” requires that the browser prove
they are in control of the author identity and
intend to compose the message. They most go
home to obtain the challenge response. This
also gives them the opportunity to register the
composition of the message and produce the
signature that will be distributed to others.

8 Software Architecture

It is clear that new protocols for social network-
ing are needed. Proliferating an implementa-
tion of a new protocol is a daunting task. There
is no canonical language of the web. We have
Ruby, Python, Perl, PHP, and many other lan-
guages that are used to write the supporting
frameworks. We cannot favour any single lan-
guage or framework.

For the federated social web to flourish,
we need web-based systems that communicate
asynchronously. There will be encryption in-
volved. There will be a desire for carefully
engineered systems that support high-volume,
low-latency message processing. It is therefore
natural to move protocol implementation into
a long-running daemon, separating the user in-
terface from protocol implementation details in
a language-agnostic way.

The reference DSNP implementation has
been developed this way. It is separated into
a content manager, which provides the web-
based UI, and a daemon that deals with the
protocol specifics. The daemon is reusable by
other systems. It is is responsible for server-
server communication, but also serves the web-
based content managers.

The content manager is responsible for pro-
viding all aspects of the user experience. It can
be written much the same way non-distributed
social networking systems are written. It
should be designed to support a collection of
users and contain numerous functions for man-
aging content. How it should differ from ex-
isting systems is that it must defer to the dae-
mon for all communication between identities.
If it follows the protocol, as implemented by the
daemon, identities can communicate not only
with other users on the same site, but with
users on other sites, including those running
software written by other people.

8.1 User Representation

In DSNP a user is identified by her IDURI. This
is a URI with scheme dsnp, followed by a host
and path, and optional arguments. Since this is
an arbitrary URI, we allow any user identifica-
tion plan (eg ?uid=N, or /user.name/). When
an IDURI is written using the https scheme

4

it is called an IDURL and it is expected to be
accessible from a web browser.

8.2 Command/Notification

The DSNP daemon exports a set of commands
for content managers to use and makes them
available over a local socket. It expected that
the content manager will make available a pro-
gram that the DSNP daemon can use to no-
tify the content manager of various events, such
as message arrival, or friend acceptance. Both
of these languages are text-based and are de-
signed to be easily constructed and parsed from
common web application languages.

The relid request is an example of a com-
mand for use by content-managers. This is the
command that should be called when a friend
request is received. It begins the friend request
process.

"RELID_REQUEST" SP

user-iduri SP

friend-iduri CRLF

The DSNP daemon responds with a request
identifier. The content manager then redirects
the browser to their home identity where the
identifier is submitted using a command similar
to this one (relid-response).

When the DSNP daemon has something it
needs to tell the content manager about, such
as a friend request being accepted, it uses the
notification interface. It will fork and execute a
program that is owned by the content manager
and send it the notification using a syntax sim-
ilar to the above. The following is the syntax
for the friend-request-accepted notification.

"FRIEND_REQUEST_ACCEPTED" SP

user-iduri SP

friend-iduri SP

accept-reqid CRLF

The content manager can then register in its
database that the event occured and appropri-
ately notify the user.

8.3 Standard HTTP Args

DSNP requires that browsers be redirected
from site to site. Redirection is necessary in

the friending, passwordless login, as well as re-
mote broadcasting portions of the protocol. To
ensure interoperability, DSNP prescribes a set
of standard HTTP args that must be added
to IDURIs to indicate certain functions, or to
provide associated information. The following
is an example of the arguments added to the
destination identity URI when the browser is
sent home in the second step of the friend pro-
cess.

addArgs($destIduri,

"dsnp=relid_response",

"dsnp_iduri=$userIduri",

"dsnp_reqid=$reqid"

)

8.4 Implementation

Most of the ideas the ideas expressed in this pa-
per are implemented in the reference implemen-
tations. The reference daemon is called DSNPd
and the content manager is called Choice So-
cial. The protocol is described in the DSNP
specification, all of which are available from the
DSNP home page.

http://www.complang.org/dsnp/

This protocol is still being developed and is
expected to change. The intent is to continu-
ously maintain a working reference implemen-
tation. As of this writing, the protocol is at
version 0.6.

9 About the Author

Adrian D. Thurston holds a Ph.D. in Com-
puter Science from Queen’s University, where
he studied and developed source transforma-
tion systems. Adrian is the author of Ragel, a
unique software development tool for produc-
ing very fast parsers. He works in the field of
network security where he designs and develops
real-time parsing systems that analyse network
traffic for evidence of security events.

5

