
A Backtracking LR Algorithm for Parsing Ambiguous

Context-Dependent Languages

Adrian D. Thurston and James R. Cordy

School of Computing
Queen’s University

Kingston, ON, Canada
{thurston, cordy}@cs.queensu.ca

Abstract

Parsing context-dependent computer lan-
guages requires an ability to maintain and
query data structures while parsing for the
purpose of influencing the parse. Parsing
ambiguous computer languages requires an
ability to generate a parser for arbitrary
context-free grammars. In both cases we have
tools for generating parsers from a grammar.
However, languages that have both of these
properties simultaneously are much more
difficult to parse. Consequently, we have
fewer techniques. One approach to parsing
such languages is to endow traditional LR
systems with backtracking. This is a step
towards a working solution, however there are
number of problems. In this work we present
two enhancements to a basic backtracking LR
approach which enable the parsing of computer
languages that are both context-dependent
and ambiguous. Using our system we have pro-
duced a fast parser for C++ that is composed
of strictly a scanner, a name lookup stage and
parser generated from a grammar augmented
with semantic actions and semantic ‘undo’
actions. Language ambiguities are resolved by
prioritizing grammar declarations.

Copyright c© 2006 Adrian D. Thurston and James
R. Cordy. Permission to copy is hereby granted pro-
vided the original copyright notice is reproduced in
copies made.

1 Introduction

To successfully parse modern programming
languages such as C, Java and C# requires
an ability to handle context dependencies. We
must lookup the meaning of an identifier to de-
termine what kind of symbol we are dealing
with before we proceed to parse the identifier.
The established practice for dealing with this
problem is the “lexical feedback hack.” During
forward parsing, semantic actions are respon-
sible for maintaining lookup tables. The lex-
ical analyzer is then responsible for querying
the type of an identifier before sending it to
the parser. We have many tools which support
this method of parsing.

A different language classification criteria is
ambiguity. To parse context-free languages
that are ambiguous requires an ability to pur-
sue at least one parse given multiple potential
parses. Again, we have many tools for gener-
ating parsers from ambiguous grammars. The
techniques available to use include GLR, Ear-
ley parsing, and generalized recursive descent.

Languages that are both context-dependent
and ambiguous are considerably more difficult
to parse than languages with just one of these
properties. They require that our facilities for
considering alternatives accommodate our need
to maintain and query global state. For exam-
ple, we may pursue one potential parse, ma-

1

nipulating global state while doing so, only to
discover that we have made the wrong guess
and we must give up and try an alternative
parse. Before we can however, our manipu-
lation of the global state must be abandoned.
Since the nature of these manipulations are de-
termined by the semantics of the language to
be parsed, they must be programmed by the
user of the parser generator. They cannot be
declared by the user and generated automati-
cally by the parser generator.

C++ is an example of a language that has
context dependencies and which is ambiguous.
We very rarely find C++ parsers to be gener-
ated from a grammar.

One approach to parsing these languages is
to convert a standard LR parser into a back-
tracking parser. Examples of such systems in-
clude BtYacc [4], Basil [20], Ratatosk [15] and
Lark [7]. There are a number of advantages
to pursuing a backtracking LR approach. The
parser will inherit the speed of LR parsing, the
simplicity and power of the bottom-up seman-
tic action model, and the ease-of-use of back-
tracking, giving us a natural ability to handle
ambiguities.

There are two problems with simply endow-
ing an LR parser with backtracking which make
it difficult to apply the approach to the pars-
ing of ambiguous context-dependent languages.
Existing backtracking LR systems only back-
track at the level of parsing. They do not el-
evate backtracking to the level of semantic ac-
tions. We therefore cannot backtrack over any
attempted parse that has modified the global
state in preparation for handling context de-
pendencies. Secondly, with these systems it
is difficult or impossible for the user to spec-
ify which potential parses should be preferred
when the grammar contains ambiguities.

In this work we have solved these two prob-
lems. The forward parsing phase is free to
manipulate the global state because our back-
tracker invokes semantic undo actions during
backtracking. Semantic undo actions can be
used to revert the effects of the forward phase.
Secondly, we have devised a method of ordering
the attempts of conflicting actions to achieve a
user-controlled and predictable parse of an am-
biguous grammar.

This approach has been successfully used

to write a grammar-based C++ parser in a
straightforward manner. Reduction actions are
free to change the global data structures that
are used to determine the type of identifiers.
This may entail pushing a namespace to the
declaration stack, or inserting a class name
into a dictionary. Immediately below a reduc-
tion action which modifies global state, the dis-
ciplined programmer is responsible for imple-
menting the reverse of the reduction action, for
example popping the declaration stack or re-
moving an item from a dictionary. This allows
the parser to correctly backtrack.

At strategic points, such as statement
boundaries, parse trees may be committed and
non-reversible actions executed. In these non-
reversible actions, which we call final actions,
the user may perform permanent tasks such as
constructing an AST or printing the result of
the parse. Finally, rules for resolving C++ lan-
guage ambiguities are implemented by ordering
mutually ambiguous productions in the order
in which they should be tried.

In the next section we discuss the vari-
ous grammar-based approaches to generating
parsers for ambiguous context-dependent lan-
guages, including existing backtracking LR sys-
tems. In Section 3 we describe our enhance-
ment to backtracking LR which allows ambigu-
ities and context dependencies to co-exist. In
Section 4 we describe our enhancement which
puts control of the backtracking strategy in the
hands of the user. In Section 5 we show how
our parsing algorithm can be applied to C++.

2 Related Work

2.1 GLR

The generalized LR parsing method [10] is
one approach to parsing ambiguous context-
dependent languages. Due to inherent paral-
lelism, use of GLR relies on post-processing of
the parse trees.

In the course of building a parse table, stan-
dard LR parser generators will emit an error
upon discovering shift-reduce or reduce-reduce
conflicts. Some parser generators may choose
one action by default and produce code that
runs, but does not necessarily work as intended.
Others generators may simply fail to proceed.

2

GLR parser generators will accept any gram-
mar and will always produce a working parser
regardless of the number of conflicts contained
in it. At run time, the generated parser will
take conflicts in stride; when encountering mul-
tiple actions on a single arc of the parse table,
it will simultaneously take all actions. From
then on all potential parses are parsed in lock-
step. Since parsing in lockstep requires multi-
ple stack instances, much research as gone into
managing a shared stack which conserves space
and computation time, making the approach
much more practical.

The GLR method can be applied very suc-
cessfully to the parsing of ambiguous lan-
guages, but we experience problems when we
introduce context dependencies. The need to
maintain type information while concurrently
pursuing multiple parses requires that we also
maintain multiple copies of the global data
structures which store the type information.

It may be possible to extend the idea of au-
tomatic parse forest sharing to the global con-
text dependency state. After all the parse tree
is itself a global state. No work in this area is
known. However, if we consider that the struc-
ture of the global state information is depen-
dent on the language being parsed, it seems
doubtful that automatic sharing of context de-
pendency information is a task that can be
moved to the parser generator. C++ has a
unique and complicated namespace structure,
accompanied by many nontrivial name lookup
rules. Lookup of template specializations re-
quires an implementation of the type system.
Models of the C++ namespace have been pro-
duced [18], though these exist only for the pur-
pose of human understanding.

Rather than attempt to parse in a single
pass, the common approach to parsing ambigu-
ous context-dependent languages with a GLR
parser is to attempt all possible parses irre-
spective of context dependencies. The tok-
enizer will yield tokens which simultaneously
carry multiple types [1] and the GLR parser
will acquire all possible interpretations. Fol-
lowing the parse, or at strategic points, dis-
ambiguation rules [11, 21] eliminate the parse
forests which are illegal according to context
dependency rules.

2.2 Generalized Top-Down

Generalized top-down parsing with full back-
tracking is a very flexible parsing method that
can be applied to ambiguous languages. When
provisions are made for handling left recursion
a wide range of parsing tasks can be imple-
mented. The TXL [2] programming language,
a language designed for prototyping and ma-
nipulating language descriptions, tools and ap-
plications, contains a parser which implements
the generalized top-down parsing method. It
allows the definition of arbitrary context-free
grammars, according to which it will parse in-
put using a top-down parser with full back-
tracking. This parsing strategy has been shown
to be very useful in language design and soft-
ware renovation tasks.

A key advantage of this method is that it
puts the user in control of the parsing strat-
egy when the grammar is ambiguous. The pre-
ferred order in which to attempt to parse mu-
tually ambiguous alternatives can be specified
locally. This is advantageous for grammar com-
position tasks in software engineering [3]. The
innermost backtracking strategy makes it easy
for the user to predict the result of the parse.

Definite clause grammars (DCGs) [17] are
a syntactic shorthand for producing parsers
with Prolog clauses which represent the in-
put with difference lists. Prolog-based pars-
ing is a very expressive parsing technique which
can be considered a generalized top-down pars-
ing method. Prolog’s backtracking guaran-
tees that all possible grammar derivations are
tested. Prolog clauses may be embedded in
grammar productions acting as syntactic or se-
mantic predicates.

It is conceivable to enhance a generalized
top-down parser with semantic actions for
maintaining global state and semantic undo ac-
tions for reverting changes to the global state
when the parser must backtrack, though work
in this area is not known to us.

The primary disadvantage of this parsing ap-
proach is that it can result in very long parse
times. Full backtracking often induces redun-
dant reparsing when grammar alternatives con-
tain common prefixes. Packrat parsing [6] at-
tempts to solve this problem by memoization
of parse trees.

3

Another approach to improving the perfor-
mance of generalized top-down parsing is de-
scribed in [9]. In this work, grammars which
have the follow-determinism property exhibit
improved parsing performance because the fol-
low sets can be used to prune the search space.

ANTLR [16] is another parsing tool which
manages the tradeoff between parsing power
and performance. Parsers generated by
ANTLR normally have the LL(k) property,
with k > 1. In recent versions it supports
LL(*) which allows k to roam and eliminates
the need to explicitly set k. Since many lan-
guages in use have LL properties, this is often
sufficient. However, for cases when it is not,
ANTLR is able to revert to a generalized top-
down method. Should the LL(*) method fail,
the parser automatically enters into a full back-
tracking mode with memoization.

2.3 Backtracking LR

Like GLR parser generators, a backtracking LR
parser generator will accept any grammar and
will always emit a working parser. Upon en-
countering a conflict, the run time system will
try the first action, remembering the choice
that was made, and continue parsing in a sin-
gle thread. Later on, should a parse error be
encountered it will undo its parsing up to the
most recent choice point, then try the next pos-
sibility.

Where a standard top-down parser with full
backtracking will revert to the innermost choice
point with respect to the grammar, a back-
tracking LR parser will revert to the rightmost,
topmost choice point with respect to the LR
stack. Such a strategy will eventually try all
possible parses.

The primary advantage of backtracking LR
parsers is that they retain the speed of LR pars-
ing when the grammar is deterministic. If back-
tracking can be kept to a minimum, the cost
of processing nondeterministic grammars need
not be prohibitive. Also, a backtracking parser
will alway yield a single parse on a single pass.
Yielding a single parse is a usual requirement
of programming language processors.

Merrill [14] describes changes made to Yacc
to support backtracking for the purpose of
parsing C++. Power and Malloy [19] suggest

using a backtracking LR parser for the initial
deployment of a C++ grammar due to the lan-
guage’s incompatiblity with standard LR pars-
ing and the ease with which backtracking LR
allows complicated grammars to be deployed
from their specification.

Backtracking LR is not without is draw-
backs. Some problems come with the ter-
ritory. In [10], it is shown that it is easy
to write a grammar that exhibits exponential
behaviour when given to a backtracking LR
parser generator. Our parsing method also suc-
cumbs to such grammars. Users must them-
selves guard against producing poorly perform-
ing grammars. Also, hidden left recursion
causes us problems and must be avoided.

Other problems we aim to fix in this work.
An inability to backtrack over semantic actions
which modify global state and an inability to
control the parsing of ambiguous constructs are
two problems which make it difficult to apply
backtracking LR in practice. These problems
are discussed in more detail in the following
sections.

2.4 BtYacc and Basil

BtYacc is a backtracking LR parser generator
derived from Berkeley Yacc. When a BtYacc
parser proceeds without encountering any con-
flicts, regular reduction actions are executed.
Since no backtracking is possible these actions
can have side effects. We refer to these as final
actions. When the parser encounters a conflict
in the parse tables, it goes into trial parsing
mode where it stops executing final actions, but
continues to execute a second class of actions,
which are specified differently in the grammar.
We refer to these as trial actions. Since the
reductions that the trial actions are associated
with may be undone, and when this happens
there is no way to revert the effects of these ac-
tions, trial actions cannot have any side effects.

When facing a shift-reduce conflict a BtY-
acc parser will always choose to shift first, then
reduce. This choice of action ordering makes
it difficult for the user to control the relative
priority of mutually ambiguous productions.
For example, when a BtYacc parser built with
the following grammar is given the input a b,
the policy of shifting first will always yield the

4

parse S -> a b, regardless of the user’s inten-
tions.

S -> A B A -> a (1)

S -> a b B -> b

The Basil parser generator leaves the order-
ing of conflicts up to the programmer. The or-
dering of shift and reduce actions is not in any
way dependent on the grammar. If one writes
an ambiguous grammar, there is more work to
be done before a desired parse strategy is at-
tained.

BtYacc allows the programmer to invoke
a commit command from reduction actions.
When one issues a commit command the en-
tire parse is committed to. This is a coarse-
grained solution that is suitable for committing
the parse when a particular token is seen.

2.5 Elsa

Elsa [13] is a C++ parser produced with the
Elkhound GLR system. Elsa demonstrates a
successful application of the post-parse disam-
biguation approach. It parses input regardless
of the meaning of C++ identifiers, then later
rejects the returned parse trees which do not
satisfy the C++ name lookup rules.

2.6 Keystone

Keystone [12] is a C++ parser written using
BtYacc. Keystone suffers from problems re-
lated to BtYacc supporting only trial and fi-
nal actions. Since the effect of trial actions
cannot be undone, they are unable to modify
the global state and therefore cannot perform
tasks such as changing the current name scope
so that subsequent parsing can lookup names
correctly.

The program in Figure 1 demonstrates why
simply supporting trial and final actions is in-
sufficient for parsing C++. The second last
line of the example is a declaration of an ob-
ject g of type E that is initialized with the value
that f returns. The last line is a declaration of
a function h that returns an object of type E
and has one unnamed parameter of type D. To
distinguish between these requires examining
the meaning of the symbols f and D. Once the
parser arrives at the initial open parentheses, it

namespace ns1

{

template <class T> struct C

{

struct D;

static int f(int)

{ return 0; }

};

}

namespace ns2

{

struct E

{

E(int) {}

};

}

ns2::E g(ns1::C< ns2::E >::f(1));

ns2::E h(ns1::C< ns2::E >::D);

Figure 1: C++ code demonstrating a need to
backtrack over global state modifications.

must enter into a trial parse mode before it can
decide upon the nature of the declaration. This
trial parsing must continue past an unknown
number of tokens until the f and D symbols are
parsed and their meaning deciphered.

To properly lookup f and D we must be aware
of the qualifying scope, in both cases this is C.
The scanner cannot perform this task because
it is unable to correctly parse template param-
eters. The class template C may indeed have
template specializations and the template pa-
rameters must be used to look these up. If we
try to communicate the qualifying scope using
some form of attribute transfer in semantic ac-
tions we are foiled by the fact that name lookup
happens in the scanning stage, before tokens
are passed to the parser. The scanner could
cheat and peek at the stack to try and guess
the correct context, but it has no sense of what
to expect on the stack.

The most sensible and straightforward way
to propagate qualification information from the
parser to the name lookup stage is for the
parser to maintain the qualification informa-
tion in a global variable and for the lookup
stage to consult this variable when needed. But
since we are in trial parse mode and any of our

5

parsing may get undone, we are forbidden from
modifying global variables.

We therefore require a parsing model that al-
lows us to parse both in the forward and back-
wards direction over semantic actions which
modify the global state. The first contribu-
tion of this work, described in the Section 3
addresses this need.

3 Backtracking Semantic
Actions

To permit parsers to backtrack over seman-
tic actions which modify the global state, we
have introduced the notion of semantic undo
actions. In all, the semantic action known the
user of Yacc has been specialized into three
types: trial, undo and final actions. Each is
appropriate for a particular kind of task.

3.1 Trial Actions

Trial actions are always executed immediately
upon a reduction. They are appropriate for ex-
ecuting actions which will affect future parsing.
The user is free to make any modifications to
the global state which can be reverted. In the
context of programming languages, this usually
involves tasks such as inserting or deleting dic-
tionary items, attaching or detaching list items,
or pushing or popping stack items. Should en-
abling the reversibility of an action require sav-
ing some data, as in the case of popping from
a stack, it can be stored in the data element
representing the reduced tree node.

Since we may need to unparse the reduced
node, we always preserve the children of a
reduction. This results in a stack of parse
trees. In many applications preserving the en-
tire parse tree is wasteful. In Section 3.4 we
describe commit declarations, which give the
parser hints as to when it is allowed to free
parse tree nodes. When nodes are freed at reg-
ular intervals, the cost of preserving reduced
data is marginal.

3.2 Undo Actions

Undo actions are used for reverting side effects
of trial actions. They are invoked as the parse

loop undoes parsing. This happens when the
parser encounters an error and must backtrack
to the most recent decision. Within the unpars-
ing loop one item is popped from the top of the
parse stack. If the node is a token, the token
undo action is executed and it is pushed back
to the input stream. If the node is a nontermi-
nal, the nonterminal’s undo action is executed,
the node is discarded and the children of the
node are pushed onto the parse stack. In both
cases, if the recently popped node contained an
alternate action then unparsing terminates and
forward parsing resumes, with the initial action
to take guided by the previous choice which was
stored in the popped node.

3.3 Final Actions

Final actions are executed when a reduction
can never be undone. They are free to make
irreversible changes to the global state and
should perform all work that is not required for
the parser to produce a correct parse tree. This
could be writing out the result of the parse,
building an AST or freeing memory.

The execution of final actions is triggered by
commit operations, which are described in the
next section. Following a commit operation,
if there are no backtracking decision points re-
maining, then all pending final actions are in-
voked up to the top of the parse stack and
all children underneath the nodes of the parse
stack are freed. This reduces the parser’s mem-
ory usage to that of a standard LR parser.

3.4 Declarative Commit Points

Programming language ambiguities are often
localized. For example, in C++ once the pars-
ing of a statement completes, any alternative
parses of the statement’s tokens can be dis-
carded. Discarding alternatives drastically im-
proves parser performance by eliminating fruit-
less reparsing, expediting the execution of final
actions, reducing the parser’s memory usage,
and enabling it to report erroneous input in a
prompt and accurate manner.

We allow the user to declare localized com-
mit points within a grammar. When the parser
arrives at a commit point, it deletes any alter-
natives within the commit point’s scope. Al-

6

orderState(tabState, prodState, time):

if not tabState.dotSet.find(prodState.dotID)

tabState.dotSet.insert(prodState.dotID)

tabTrans = tabState.findMatchingTransition(prodState.getTransition())

if tabTrans is NonTerminal:

for production in tabTrans.nonTerm.prodList:

orderState(tabState, production.startState, time)

for all expandToState in tabTrans.expandToStates:

for all followTrans in expandToState.transList

reduceAction = findAction(production.reduction)

if reduceAction.time is unset:

reduceAction.time = time++

end

end

end

end

end

shiftAction = tabTrans.findAction(shift)

if shiftAction.time is unset:

shiftAction.time = time++

end

orderState(tabTrans.toState, prodTrans.toState, time)

end

end

orderState(parseTable.startState, startProduction.startState, 1)

Figure 2: Ordering shifts and reduces to emulate a generalized top-down strategy.

ternatives deeper in the stack are not affected,
allowing the user to delete alternatives which
are of no interest, while preserving earlier al-
ternatives that are still plausible.

There are two forms of commit points:
reduction-based and shift-based. A reduction-
based commit point is associated with an entire
grammar production. When the production is
initially reduced, all alternatives embedded un-
derneath the new nonterminal are deleted. A
shift-based commit point is embedded into a
production someplace before the end. When
the first character of the grammar item to the
right is shifted, the grammar items to the left
are committed.

The need for shift-based commit points arises
due to the block structutre of programming
languages. For example, it desirable to be able
to commit the signature of a function definition

when we begin to recognize the statements con-
tained in it.

definition -> type name (param_list)

commit { definition_list }

Without shift-based commit declarations we
would be required to restructure our grammar
if we wanted to commit the function signature
before entering the body.

Note however, that until a character which
follows an entire production is recognized, it
is not guaranteed that the production will be
reduced, which means that shift-based commit
declarations may affect alternate parses. They
should therefore be used ahead of relatively un-
ambiguous language constructs.

A commit declaration does not guarantee
that the tree underneath it will be freed be-
cause earlier alternatives may still exist. To

7

START

a / R(AB−3, 1), S(12)

AB / S(3)

A / S(16)

b / R(A−2, 14)

AB / S(24)

a / SR(A−1, 17), R(AB−3, 21)

b / R(AB−3, 22)

a / SR(AB−1, 29)

b / R(AB−3, 2)

EOF / R(A−2, 15)

EOF / R(AB−3, 23)

EOF / R(S−2, 30)

b / SR(AB−2, 25)

a / SR(AB−1, 7)

EOF / R(S−1, 11)

b / R(AB−2, 6)

a / R(AB−2, 5)

b / S(4)

a / R(A−2, 13)

Figure 3: LALR(1) parse tables of grammar (2). The unique timestamp assigned to each action is
shown. The resulting action ordering emulates a top-down parsing strategy.

avoid redundant tree traversal, an implementa-
tion of this technique should optimize the com-
mit operation such that it only incurs a cost
when alternatives exist within the scope of the
commit.

4 User-Controlled Parsing
Strategy

The second contribution of this work addresses
the need for user-controlled parsing of ambigu-
ous language constructs. We have improved
the backtracking LR approach by giving users
localized, grammar-based control of the order
in which conflicting LR actions should be at-
tempted. To accomplish this we have devised
an algorithm which traverses the parser’s state
tables and assigns an ordering to the actions
such that a generalized top-down backtracking
strategy is emulated. This algorithm is shown
in Figure 2. By emulating a generalized top-
down approach we give the user the ability to
specify mutually ambiguous productions in the
order in which the parser should attempt to
parse them. We also ensure that the parser will
prefer the longest possible match of sequences.

Following the construction of the parser state
tables, our algorithm traverses both the state
tables and the grammar productions in paral-
lel. The order of the traversal is guided by a
top-down interpretation of the grammar pro-
ductions. We start with a nonterminal as our
goal and consider each production of the non-
terminal in succession. As we move along a
production’s right-hand side we recurse on non-
terminals before we proceed past them. When
we visit a shift transition we assign a time to
it if one has not already been given. Follow-
ing the traversal down the right-hand side of a
production, we find the transitions which con-
tain the reduction actions of the production in-
stance and assign a time to each reduction ac-
tion if one has not already been given.

To limit the traversal and guarantee termi-
nation we visit a parse table and production
state pair only once. This is accomplished by
inserting the dot item of the production state
into the parse table state and proceeding with
the pair only when the dot item previously did
not exist. Note that this yields dot sets iden-
tical to those computed during the LR parse
table construction.

The following grammar demonstrates the

8

ability of our algorithm to properly order mu-
tually ambiguous productions and to prefer the
longest match of a sequence. The correspond-
ing parse tables are given in Figure 3.

S -> AB b AB -> AB a

S -> a A AB AB -> AB b (2)

A -> A a AB ->

A ->

The timestamps assigned by our action or-
dering algorithm are shown in each transition
action. There are two conflict points. The first
is in the transition leaving the start state on
the input character a. This transition will first
induce a reduction of AB, then a shift. This
represents the pursuit of the first production of
S. The second conflict represents the choice be-
tween extending the A sequence and beginning
the AB sequence when we are matching the sec-
ond production of S. In this case the parser first
shifts and reduces A to pursue a longest match
of A.

4.1 Parsing Example

Figure 4 shows the run-time behaviour of the
backtracking LR parser generated from gram-
mar (2) when run on the input a b a. Nor-
mally, an LR parser discards the nodes it has
popped off of the stack during a reduction.
Since we must be prepared to backtrack we
preserve these nodes as children of the newly
reduced node. These children nodes are shown
underneath their parent in the middle column.
Though there are none in this example, use of
commit declarations to clear the retry points
causes these nodes to be freed.

The retry point (r:2) is recorded in the re-
duced node AB of the first reduction. When
the unparsing loop arrives at this retry point
it transfers it to the first input symbol and re-
sumes forward parsing. The forward parsing
loop will then read the retry point and shift
instead of reduce.

4.2 Out-of-Order Parse Correc-
tion

Unfortunately it is possible to find grammars
whose mutually ambiguous productions will
not be parsed in order. As it turns out, the

Action Stack Input

a b a EOF

reduce AB(r:2) a b a EOF

shift AB(r:2) a b a EOF

reduce AB b a EOF

AB(r:2) a

shift AB b a EOF

AB(r:2) a

reduce AB a EOF

AB b

AB(r:2) a

shift AB a EOF

AB b

AB(r:2) a

ERROR

unshift AB a EOF

AB b

AB(r:2) a

unreduce AB b a EOF

AB(r:2) a

unshift AB b a EOF

AB(r:2) a

unreduce AB(r:2) a b a EOF

unshift AB(r:2) a b a EOF

unreduce a(r:2) b a EOF

shift a b a EOF

reduce a A b a EOF

reduce a A AB b a EOF

shift a A AB b a EOF

reduce a A AB a EOF

AB b

shift a A AB a EOF

AB b

reduce a A AB EOF

AB a

AB b

Figure 4: Parsing of the string a b a, accord-
ing to grammar (2). Since in this case we must
be prepared to backtrack, we preserve popped
nodes. Commit declarations can be used to
clear retry points, which in turn causes these
preserved nodes to be freed.

parse strategy we aim for is reserved only for
true top-down parsers. LR parsers attempt
to parse common production prefixes in paral-
lel. This allows parsers to run very fast, but it
can inhibit us from achieving a top-down strat-
egy because it shuffles the order of backtrack-
ing decisions by delaying the branching of pro-
ductions. For example, consider the following

9

a / S(1)

EOF / R(S−2, 12)

c / SR(S−3, 13)

x / SR(S−1, 10)

b / R(F−1, 2), S(4)

EOF / R(F−1, 3)

START

c / SR(F−2, 5)

b / S(9)

F / S(8)

START
U1 / S(2)

U3 / S(20)

a / R(U1−1, 1), R(U2−1, 14), R(U3−1, 19)

F / S(10)

a / S(3)
b / S(11)

a / S(16)
F / SR(S−2, 17)

F / S(22)
b / S(23)

b / R(F−1, 4), S(6)

EOF / R(F−1, 5)

U2 / S(15)

c / SR(F−2, 7)

x / SR(S−1, 12)

c / SR(S−3, 24)

a / S(21)

Figure 5: LALR(1) parse tables before and after adding unique empty productions that force the
parser to select on the possible derivations of S before selecting on the possible derivations of F.

grammar.

S -> F b x F -> a

S -> F F -> a b c (3)

S -> F b c

When given the input string a b c, a gener-
alized top-down parser will attempt the follow-
ing derivations. Note that it branches on the
possible derivations of S first, then branches on
the possible derivations of F.

S -> F(a) b x fail

S -> F(a b c) b x fail

S -> F(a) fail

S -> F(a b c) accept

Our backtracking LR parser does not yield
the same parse. Since all three S productions
have a common prefix F, the prefix will be
parsed once for all productions. The parser will
branch on the possible derivations of F first,
then later branch on the derivations of S. This
out-of-order branching causes an out-of-order
parse. When we trace the parser’s behaviour,
we find that it first reduces F -> a, then suc-
ceeds in matching S -> F b c.

S -> F(a) b x fail

S -> F(a) fail

S -> F(a) b c accept

The offending LR state tables are shown in
the first part of Figure 5.

Fortunately we are able to solve this problem
easily. When we find our input to be parsed
out of order with respect to our grammar, we
can force a correct order by introducing unique
empty productions at the beginning of the pro-
ductions which are parsed out of order. The
unique empty productions will cause an im-
mediate reduce conflict before any inner pro-
ductions are reduced, effectively allowing us to
force the slower top-down parsing approach in
a localized manner. We can change grammar
(3) to the following and achieve the same pars-
ing strategy as a top-down parser.

S -> U1 F b x F -> a U1 ->

S -> U2 F F -> a b c U2 -> (4)

S -> U3 F b c U3 ->

The second part of Figure 5 shows the LR
tables after forcing an initial selection on S. An
ability to force a branch point is very useful
when unioning grammars because it frees us
from analyzing how the LR state tables inter-
act. The cost of forcing a branch point lies in
increasing the number of states and lengthen-
ing parse times. However we do so only locally,
and only when required.

10

4.3 Semantic Conditions and Er-
ror Recovery

An advantage of a our approach is that it af-
fords simple implementations of semantic con-
ditions and error recovery. Should a reduction
action detect that a parse violates a semantic
condition, it can invoke the backtracker and the
parser will move on to an alternative parse.

With a simple enhancement to the state ta-
ble generator in the form of an any* token
which repeatedly matches input tokens up to a
termination point, it is possible to implement a
well-known error handling technique. The fol-
lowing error handler consumes input until the
input stream and parser go back into a stable
state where correct parsing may resume.

statement -> U1 for_block

statement -> U1 while_block

...

statement -> U2 any* ;

5 Case Study: C++

To validate our ideas we have applied them to
the parsing of C++. The C++ language has a
reputation of being very difficult to parse using
grammar-based techniques. Many C++ com-
pilers use a hand-written recursive descent ap-
proach, including GCC, OpenC++ and Open-
Watcom.

Our parser is composed strictly of a scanner,
a name lookup routine inserted between the
scanner and parser, and a grammar. Some pro-
ductions are accompanied by trial, undo and/or
final actions. Backtracking performance is im-
proved with a small number of commit declara-
tions that we associate with C++ declarations,
statements and the opening of block structures.

5.1 Use of Semantic Undo Ac-
tions

We use semantic undo actions to revert the ef-
fects of trial actions which manipulate the C++
name hierarchy and prepare for name lookups
by posting name qualifications. An example
is given in Figure 6. These empty nontermi-
nals open and close a C++ declaration. They
are used to initialize the data structure into

globals {

Stack<bool> templDecl;

Stack<DeclarationData> declData;

};

declaration_start:

try {

declData.push(DeclarationData());

declData.top().init();

declData.top().isTemplate =

templDecl.top();

}

undo {

declData.pop();

};

nonterm declaration_end {

DeclarationData declData;

};

declaration_end:

try {

$$->declData = declData.pop();

}

undo {

declData.push($$->declData);

};

Figure 6: Semantic actions which wrap decla-
rations.

which we collect information about the decla-
ration. This information will be used when we
record the declaration in the C++ name hier-
archy. During forward parsing, we push a fresh
instance of the structure to a stack when open-
ing a declaration and pop the structure when
closing a declaration. During unparsing we re-
vert these actions.

In all, semantic undo actions are relatively
sparse. In our C++ grammar there are 576
productions, 61 of which have semantic undo
actions. Many of them are concerned with
removing items from dictionaries or popping
items from stacks and are similar.

5.2 Resolving Ambiguities

C++ has a number of ambiguities documented
in the language standard [5]. These ambigui-
ties can be resolved according to the standard
by utilizing the parsing strategy of our back-
tracking LR algorithm. In the remainder of this
section we describe how we have implemented
the resolution of each ambiguity.

11

5.2.1 Ambiguity 1: Section 6.8

There is an ambiguity between declaration
statements and expressions statements. To re-
solve this ambiguity, we follow the rule that
any statement that can be interpreted as dec-
laration is a declaration. We program this by
specifying the declaration statement produc-
tion ahead of the expression statement produc-
tion.

struct C {};

void f(int a)

{

C(a)[5]; // declaration

C(a)[a=1]; // expression

}

statement: declaration_statement commit;

statement: expression_statement commit;

5.2.2 Ambiguity 2: Section 8.2, Para 1

There is an ambiguity between a function dec-
laration with a redundant set of parentheses
around the parameter declaration and an ob-
ject declaration with an initialization using a
function-style cast expression. Again, we apply
the rule that any program text that can be a
declaration is a declaration. Therefore we must
prefer the function declaration. The resolution
of this ambiguity is handled automatically by
our parsing strategy, because parameter spec-
ifications are innermost relative to object ini-
tializations.

struct C {};

int f(int a)

{

C x(int(a)); // function declaration

C y(int(1)); // object declaration

}

init_declarator:

declarator initializer_opt;

declarator:

ptr_operator_seq_opt declarator_id

array_or_param_seq_opt;

array_or_param_seq_opt:

array_or_param_seq_opt array_or_param;

array_or_param_seq_opt: ;

array_or_param:

’[’ constant_expression_opt ’]’;

array_or_param:

’(’ parameter_declaration_clause ’)’

cv_qualifier_seq_opt exception_spec_opt;

initializer_opt: ’=’ initializer_clause;

initializer_opt: ’(’ expression ’)’;

initializer_opt: ;

5.2.3 Ambiguity 3: Section 8.2, Para 2

In contexts where we can accept either a type-
id or an expression, there is an ambiguity be-
tween an abstract function declaration with no
parameters and a function-style cast. The res-
olution is that any program text which can be
a type-id is a type-id. We program this by
specifying the productions which derive type-
ids ahead of the productions which derive ex-
pressions.

template<class T> class D {};

int f()

{

sizeof(int()); // sizeof type-id

sizeof(int(1)); // sizeof expression

D<int()> l; // type-id argument

D<int(1)> l; // expression argument

}

unary_expression: KW_Sizeof ’(’ type_id ’)’;

unary_expression: KW_Sizeof unary_expression;

template_argument: type_id;

template_argument: assignment_expression;

5.2.4 Ambiguity 4: Section 8.2, Para 7

In contexts which accept both abstract declara-
tors and named declarators there is an ambi-
guity between an abstract function declaration
with a single abstract parameter and an ob-
ject declaration with a redundant set of paren-
theses. This arises in function parameter lists.
The resolution is to consider the text as an
abstract function declaration with a single ab-
stract parameter. We program this by speci-
fying abstraction declarators ahead of named
declarators.

struct C {};

void f(int (C)); // anon function ptr param

void f(int (x)); // variable parameter

parameter_declaration:

decl_specifier_seq param_declarator_opt

parameter_init_opt;

param_declarator_opt: abstract_declarator;

param_declarator_opt: declarator;

param_declarator_opt: ;

12

5.3 Parsing Speed

Our parsing method is competitively fast.
Though meaningful timings are difficult to ob-
tain because there are no C++ parsers which
perform the exact same amount of work as
ours. Admittedly, our parser is not complete;
we do just enough work to obtain a nearly-
correct parse. We have not implemented the
complete type and expression evaluation sys-
tems, which both require a considerable effort
to implement. These are necessary for looking
up template specializations. This in turn af-
fects our ability to properly lookup names in
some contexts.

Nevertheless, we give a timing of our untuned
and incomplete prototype and a timing of GCC
on the same file to give a general sense that our
method is suitable for practical tasks. On a 2.4
GHz Intel processor, our parser handles a 1.3
MB preprocessed file belonging to the Mozilla
source code repository in 0.154 seconds. On
the same file, the g++ 3.3.5 compiler reported
that the sum of scanning, parsing and name
lookup took 0.980 seconds. This information
was obtained with the -ftime-report option.

6 Future Work

The problem of detecting out-of-order parses
and eliminating them by inserting unique
empty productions is a task that we leave up to
the user. It would be desirable to have a static
analysis which was able to detect out-of-order
parses and automatically correct the problem
by inserting unique empty productions where
appropriate. In initial investigations we found
this to be a difficult problem, closely related
to the detection of ambiguities in context-free
grammars, which has been shown to be an un-
decidable problem [8].

An alternate strategy for guaranteeing that
no out-of-order parses are possible might be to
begin by inserting unique empty productions at
the beginning of every production, then later
eliminate those which are unnecessary. Main-
taining in-order parsing may be easier than de-
tecting out-of-order parsing.

When we insert unique empty productions
at the beginning of every production we guar-
antee that no input is parsed out of order.

This causes a backtracking LR parser to be-
have like a generalized top-down parser. This
idea was tested with our C++ parser. We in-
serted unique empty productions at the begin-
ning of every production which did not contain
left recursion, direct, indirect or hidden. The
resulting parser produced the same output, but
performance slowed by a factor of 20, and there
was an increase in the number of states by a
factor of 2.

If automatic detection of out-of-order parses
proves too difficult or unnecessary, it may be
worthwhile to pursue methods for analyzing an
explicitly specified pair of ambiguous produc-
tions for potential out-of-order parses. This
would ensure that unique empty productions
are added only when necessary.

7 Conclusion

In this work we describe two enhancements to
a backtracking LR parsing approach which en-
able the parsing of languages that are both
context-dependent and ambiguous.

We introduce a new class of semantic ac-
tions for reverting changes made to the global
state, which we call undo actions. These ac-
tions are straightforward to program and per-
mit the parser to backtrack over areas of in-
put text which require preparations for han-
dling context dependencies. Declarative com-
mit points can be used eliminate fruitless back-
tracking and improve performance in a local-
ized manner.

Secondly, we assign an ordering to conflicting
shift and reduce actions that causes the parser
to emulate the parsing strategy of a generalized
top-down parser for many grammars. In cases
where common prefixes inhibit the desired top-
down strategy, unique empty productions can
be inserted at the beginning of productions to
force a localized top-down approach. This will
guarantee that the parser attempts to parse
mutually ambiguous productions in the order
in which they are given. Using our method,
we can apply a top-down backtracking strategy
where needed for resolving ambiguities, while
retaining the speed of LR parsing for sections
of the grammar which are deterministic.

13

Acknowledgments

The authors wish to thank Nigel Horspool and
Terence Parr for their assistance in understand-
ing the relation of our work to other methods.
This work is supported by the Natural Sciences
and Engineering Research Council of Canada.

About the Authors

Adrian Thurston is a Ph.D. candidate at
Queen’s University working in the Software
Technology Laboratory under the supervision
James Cordy. He completed his M.Sc. also
at Queen’s and his B.Math (Computer Sci-
ence) at the University of Waterloo. Adrian’s
research interests include parsing technology,
source transformation and programming lan-
guages.

James Cordy is the Director of the School
of Computing and Professor of Computing
and Electrical and Computer Engineering at
Queen’s University. From 1995 to 2000 he
was Vice President and Chief Research Scien-
tist at Legasys Corporation, a software tech-
nology company specializing in legacy software
system analysis and renovation. Dr. Cordy
is a founding member of the Software Tech-
nology Laboratory at Queen’s University and
winner of the 1994 ITRC Innovation Excellence
award and the 1995 ITRC Chair’s Award for
Entrepreneurship in Technology Innovation for
his work there. He serves on a range of software
engineering conference committees and has re-
cently co-chaired several conferences and work-
shops including CASCON 2005. Dr. Cordy is
an IBM Faculty Fellow and has been awarded
IBM Faculty Innovation Awards in both 2004
and 2005.

References

[1] John Aycock and R. Nigel Horspool.
Schrodinger’s token. Software: Practice
and Experience, 31(8):803–814, July 2001.

[2] James R. Cordy. The TXL source trans-
formation language. Science of Com-
puter Programming, 61(3):190–210, Au-
gust 2006.

[3] Thomas R. Dean, James R. Cordy, An-
drew J. Malton, and Kevin A. Schneider.
Agile parsing in TXL. Journal of Au-
tomated Software Engineering, 10(4):311–
336, October 2003.

[4] Chris Dodd and Vadim Maslov. Back-
tracking Yacc, 2006.
http://www.siber.com/btyacc/.

[5] International Organization for Standard-
ization. ISO/IEC 14882:1998: Program-
ming languages — C++. American Na-
tional Standards Institute, First edition,
September 1998.

[6] Bryan Ford. Packrat parsing: simple,
powerful, lazy, linear time. In Proceedings
of the seventh ACM SIGPLAN interna-
tional conference on Functional program-
ming (ICFP’02), pages 36–47, New York,
NY, USA, 2002. ACM Press.

[7] Josef Grosch. Lark - An LALR(2) parser
generator with backtracking. Technical
Report 32, CoCoLab - Datenverarbeitung,
September 2002.

[8] John E. Hopcroft and Jeffrey D. Ullman.
Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley,
1979.

[9] Adrian Johnstone and Elizabeth Scott.
Generalised recursive descent parsing and
follow determinism. In Compiler Con-
struction: 7th International Conference
(CC’98), volume 1383 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

[10] Adrian Johnstone, Elizabeth Scott, and
Giorgios Economopoulos. Generalised
parsing: Some costs. In Compiler Con-
struction: 13th International Conference
(CC’04), volume 2985 of Lecture Notes in
Computer Science, page 89, April 2004.

[11] Paul Klint and Eelco Visser. Using fil-
ters for the disambiguation of context-free
grammars. In G. Pighizzini and P. San

14

Pietro, editors, Proc. ASMICS Workshop
on Parsing Theory, pages 1–20, October
1994.

[12] Brian A. Malloy, Tanton H. Gibbs, and
James F. Power. Decorating tokens to fa-
cilitate recognition of ambiguous language
constructs. Software: Practice and Expe-
rience, 33(1):19–39, 2003.

[13] Scott McPeak and George C. Necula.
Elkhound: A fast, practical GLR parser
generator. In Compiler Construction:
13th International Conference (CC’04),
volume 2985 of Lecture Notes in Computer
Science, April 2004.

[14] Gary H. Merrill. Parsing non-LR(k) gram-
mars with Yacc. Software, Practice and
Experience, 23(8):829–850, 1993.

[15] Torben Mogensen. Ratatosk: A parser
generator and scanner generator for
Gofer, 1993. ftp://ftp.diku.dk/pub/diku/
dists/Ratatosk.tar.Z.

[16] Terence J. Parr and Russell W. Quong.
ANTLR: A predicated LL(k) parser gen-
erator. Software, Practice and Experience,
25(7):789–810, 1995.

[17] Fernando C. N. Pereira and David H. D.
Warren. Definite clause grammars for lan-
guage analysis - A survey of the formal-
ism and a comparison with augmented
transition networks. Artificial Intelligence,
13(3):231–278, 1980.

[18] James F. Power and Brian A. Mal-
loy. Symbol table construction and name
lookup in ISO C++. In Proceedings of the
International Conference on the Technol-
ogy of Object-Oriented Languages and Sys-
tems (TOOLS’00), pages 57–68, Novem-
ber 2000.

[19] James F. Power and Brian A. Malloy.
Exploiting metrics to facilitate grammar
transformation into LALR format. In Pro-
ceedings of the 2001 ACM Symposium on

Applied Computing (SAC’01), pages 636–
640, New York, NY, USA, 2001. ACM
Press.

[20] Michael Spencer. Basil: A backtracking
LR parser generator, 2006.
http://www.lazycplusplus.com/basil/.

[21] Mark G. J. van den Brand, Jeroen
Scheerder, Jurgen Vinju, and Eelco Visser.
Disambiguation filters for scannerless gen-
eralized LR parsers. In Compiler Con-
struction: 11th International Conference
(CC’02), volume 2304 of Lecture Notes in
Computer Science, pages 143–158, Greno-
ble, France, April 2002.

15

